Math 255A Lecture 25 Notes

Daniel Raban

November 28, 2018

1 The Weak^{*} Topology and the Banach-Alaoglu Theorem

1.1 Completeness of the weak^{*} topology

Proposition 1.1. Let $\xi_n \in B^*$ be such that $\xi_n - \xi_m \to 0$ in $\sigma(B^*, B)$ as $n, m \to \infty$. Then there exists $\xi \in B^*$ such that $\xi_n \to \xi$ in $\sigma(B^*, B)$.

Proof. We have $\langle x, \xi_m \rangle - \langle x, \xi_m \rangle \to 0$ for each $x \in B$, so the limit $\lim_{n\to\infty} \langle x, \xi_n \rangle$ exists pointwise, and we can let $\langle x, \xi \rangle = \lim_{n\to\infty} \text{ for } x \in B$. Then $\xi \in B^*$ by the Banach-Steinhaus theorem.

1.2 Tychonov's theorem and the Banach-Alaoglu theorem

Theorem 1.1 (Banach-Alaoglu). Let B be a Banach space. Then the closed unit ball $U = \{\xi \in B^* : ||\xi|| \le 1\}$ is compact in $\sigma(B^*, B)$.

The main point in the proof is Tychonov's theorem from point set topology. Let's review this.

Let $(X_{\alpha})_{\alpha \in J}$ be a collection of topological spaces. Then the product space $X = \prod_{\alpha \in J} X_{\alpha} = \{f : J \to \bigcup_{\alpha \in J} X_{\alpha} \mid f(\alpha) \in X_{\alpha} \, \forall \alpha \in J\}$. is equipped with the product topology, the weakest topology such that the projection maps $p_{\alpha} : X \to X_{\alpha}$ sending $x \mapsto x_{\alpha}$ (where $x = \{x_{\alpha}\}_{\alpha \in J}$) are continuous for all α . A base for the product topology is given by the finite intersection $\bigcap_{\text{finite}} p_{\alpha}^{-1}(O_{\alpha})$, where $O_{\alpha} \subseteq X_{\alpha}$ is open.

Theorem 1.2 (Tychonov). If X_{α} is compact for all $\alpha \in J$, then the space $X = \prod_{\alpha \in J} X_{\alpha}$ is compact in the product topology.

We will not prove this, but we will use this in our proof of the Banach-Alaoglu theorem.

Proof. When $x \in B$, let $D_x = \{z \in K : |z| \leq ||x||\}$. If $\xi \in U = \{\xi \in B^* : ||\xi|| \leq 1\}$, then $\langle x, \xi \rangle \in D_x$ for all x. Consider the injective map $\gamma : U \to D = \prod_{x \in B} D_x$ sending $\xi \mapsto \{\langle x, \xi \rangle\}_{x \in B}$. Equip U with the weak^{*} topology and D with the product topology.

We claim that γ is continuous. Let O be an open set in D. We can assume that $O = \{f = (f_x)_{x \in B} : |f_{x_j} - cx_j| < \varepsilon_{x_j}, \varepsilon_{x_j} > 0, c_{x_j} \in D_{x_j}, 1 \le j \le N\}$. Then the inverse image $\gamma^{-1}(O) = \{\xi \in U : |\langle x_j, \xi \rangle - c_{x_j}| < \varepsilon_{x_j}, 1 \le j \le N\}$ is open in $\sigma(B^*, B)$. Similarly, $\gamma^{-1} : \operatorname{im}(\gamma) \to U$ is continuous. So $\gamma : U \to \operatorname{im}(\gamma)$ is a homeomorphism.

It suffices to check that $im(\gamma) \subseteq D$ is compact in the product topology. By Tychonov's theorem, D is compact, so we only need that $im(\gamma)$ is closed. We have that

$$\operatorname{im}(\gamma) = \{ f = (f_x)_{x \in B} \in D : f_{x+y} = f_x + f_y, f_{\lambda x} = \lambda f_x \,\forall x, y \in B, \forall \lambda \in \mathbb{C} \}$$
$$= \bigcap_{x,y \in B} \{ f : f_{x+y} = f_x + f_y \} \cap \bigcap_{\substack{\lambda \in \mathbb{C} \\ x \in B}} \{ f : f_{\lambda x} = \lambda f_x \}.$$

We now claim that $E_{x,\lambda} := \{f = (f_y)_{y \in B} : f_{\lambda x} = \lambda f_x\}$ is closed in D. Let $f_0 \in \overline{E_{x,\lambda}}$. An open neighborhood of f_0 is a set of the form $V_{x,\varepsilon} := \{f \in D : |f_x - f_{0,x}| < \varepsilon\}$. Let $f \in E_{x,\lambda} \cap V_{\lambda x,\varepsilon} \cap V_{x,\varepsilon}; V_{\lambda x,\varepsilon} \cap V_{x,\varepsilon}$ is an open neighborhood of f_0 . Then

$$\begin{aligned} |f_{0,\lambda x} - \lambda f_{0,x}| &= |f_{0,\lambda x} - f_{\lambda x} + \lambda f_x - \lambda f_{0,x}| \\ &\leq |f_{0,\lambda x} - f_{\lambda x}| + |\lambda| |f_x - f_{0,x}| \\ &\leq \varepsilon + |\lambda|\varepsilon, \end{aligned}$$

so $f_0 \in E_{x,\lambda}$. The result follows.

Now that we have proved the theorem in full generality, it is worth noting that for separable Banach spaces, there is an elementary proof.

Proposition 1.2. Let B be a separable Banach space, and let x_1, x_2, \ldots be a dense subset. Then the seminorms $\xi \mapsto |\langle x_k, \xi \rangle|$ for $j = 1, 2, \ldots$ define the same ropology as $\sigma(B^*, B)$.

Proof.

Corollary 1.1. Let B be a separable Banach space. Then $U = \{\xi \in B^* : ||\xi|| \le 1\}$ is a compact metrizable space in the weak^{*} topology $\sigma(B^*, B)$.

Proof. If $||\xi_n|| \leq 1$ for n = 1, 2, ..., then there exists a subsequence (ξ_{n_k}) converging in $\sigma(B^*, B)$.